#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Low grade inflammatory reaction in pathogenesis of metabolic syndrome


Authors: Peter Galajda;  Matej Samoš;  Tomáš Bolek;  Simona Horná;  Marián Mokáň
Authors‘ workplace: I. interná klinika JLF UK a UNM, Martin
Published in: Forum Diab 2023; 12(2): 84-90
Category:

Overview

Metabolic syndrome is defined as cluster of independent risk factors of type 2 diabetes mellitus and cardiovascular diseases including prediabetic states associated with insulin resistance as impaired fasting glucose, impaired glucose tolerance and/or bordering increased glycosylated hemoglobin; central obesity, atherogenic dyslipidemia with increasing of triglyceride levels and decreasing of high density lipoprotein levels and hypertension. Etiopathogenesis of metabolic syndrome implements expansion of dysfunctional adipose tissue with activation of immune system, induction of low grade inflammatory reaction and induction of insulin resistance by cytokine and lipids. Antidiabetic treatment by metformin, agonists of glucagon-like peptide-1 receptor and inhibitors of sodium-glucose cotransporter-2 is associated with benefit anti-inflammatory remodelling of adipose tissue.


Sources

1. Galajda P, Mokáň M. Metabolický syndróm, diabetes mellitus a pridružené ochorenia. Vydavateľstvo QuickPrint: Martin 2020.

2. Zatterale F, Longo M, Naderl J et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol 2020; 10: 1–20. Dostupné z DOI: <http://dx.doi.org/10.3389/fphys.2019.01607>.

3. Wang X, Bao W, Liu J et al. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2013; 36(1): 166–175. Dostupné z DOI: <http://dx.doi.org/10.2337/dc12–0702>.

4. Hanley AJG, Karter AJ, Festa A et al. Factor analysis of metabolic syndrome using directly measured insulin sensitivity. The Insulin Resistance Atherosclerosis Study. Diabetes 2002; 51(8): 2642–2647. Dostupné z DOI: <http://dx.doi.org/10.2337/diabetes.51.8.2642>.

5. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542(7640): 177–185. Dostupné z DOI: <http://dx.doi.org/10.1038/nature21363>.

6. Cani PD, Amar J, Iglesias MA et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761–1772. Dostupné z DOI: <http://dx.doi.org/10.2337/db06–1491>.

7. Rocha DM, Caldas AP, Oliveira LL et al. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016; 244: 211–215. Dostupné z DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.015>.

8. Rogero MM, Calder PC. Obesity, inflammation, Toll-like receptor 4 and fatty acids. Nutrients 2018; 10(4): 432. Dostupné z DOI: <http://dx.doi.org/10.3390/nu10040432>.

9. Choe SS, Huh JY, Hwang IJ et al. Adipose tissue remodelling. Its role in energy metabolism and metabolic disorders. Frontiers Endocrinol (Lausanne) 2016; 7: 30. Dostupné z DOI: <http://dx.doi.org/10.3389/fendo.2016.00030>.

10. Longo M, Zatterale F, Naderi J et al. Adipose tissue dysfunction as determinant of obesity associated metabolic complications. Int J Mol Sci 2019; 20(9): 2358. Dostupné z DOI: <http://dx.doi.org/10.3390/ijms20092358>.

11. Galajda P, Mokáň M. Imunometabolický pohľad na komponenty metabolického syndrómu. Forum Diab 2021; 10(3): 165–172.

12. Pinheiro-Machado E, Gurgul-Convey E, Marzec MT. Immunometabolism in type 2 diabetes mellitus: tissue-specific interactions. Archi Med Sci 2020. Dostupné z DOI: <http://dx.doi.org/10.5114/aoms.2020.92674.10.1007/s00281–013–0403–7>.

13. Eheim A, Medrikova D, Herzig S. Immune cells and metabolic dysfunction. Semin Immunopathol 2014; 36(1): 13–25. Dostupné z DOI: <http://dx.doi.org/10.1007/s00281–013–0403–7>.

14. Seijkens T, Kusters P, Chatzigeorgiou A et al. Immune cells crosstalk in obesity: A key role for costimulation? Diabetes 2014; 63(12): 3982–3991. Dostupné z DOI: <http://dx.doi.org/10.2337/db14–0272>.

15. Chng MHY, Alonso MN, Barnse SE et al. Adaptive immunity and antigen-specific activation in obesity-associated insulin resistance. Mediators Inflamm 2015; 2015: 593075. Dostupné z DOI: <http://dx.doi.org/10.1155/2015/593075>.

16. Apostolopoulos V, de Courten M, Stojanovska L et al. The complex immunological and inflammatory network of adipose tissue in obesity. Mol Nutr Food Res 2016; 60(1): 43–57. Dostupné z DOI: <http://doi/10.1002/mnfr.201500272>.

17. Castoldi A,de Souza CN, Câmara N, Moraes-Vieira PM. The macrophage switch in obesity development. Frontiers Immunol 2016; 6:637. Dostupné z DOI: <http://dx.doi.org/10.3389/fimmu.2015.00637>.

18. Permana PA, Menge C, Reaved PD. Macrophage secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun 2016; 341(2): 507–514. Dostupné z DOI: <http://doi/10.1016/j.bbrc.2006.01.012>.

19. Lackey DE, Olefsky JM. Regulation of metabolism by innate immune system. Nat Rev Endocrinol 2016; 12(1): 15–28. Dostupné z DOI: <http://dx.doi.org/10.1038/nrendo.2015.189>.

20. Chehimi M, Vidal H, Eljaafari A. Pathogenic role of IL-17 producing immune cells in obesity and related inflammatory diseases. J Clin Med 2017; 6(7): 68. Dostupné z DOI: <http://dx.doi.org/10.3390/jcm6070068>.

21. Saetang J, Sangkhathat S. Role of innate lymphoid cells in obesity and metabolic disease. Mol Med Reports 2018; 17(1): Dostupné z DOI: <http://dx.doi.org/1403–1412.10.3892/mmr.2017.8038>.

22. Mokáň M, Galajda P. Imunometabolický pohľad na inzulínovú rezistenciou. Forum Diab 2021; 10(2): 136–141.

23. Fernandez-Real JM, Ricart W. Insulin resistance and inflammation in an evolutionary perspectives: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 1999; 42(1): 1367–1374. Dostupné z DOI: <http://dx.doi.org/10.1007/s001250051451>.

24. Pruimboom L, Raison CL, Muskiet FAJ. The selfish immune system when the immune system overrides the ‘selfish’ brain. J Immunol Clin Microbiol 2020; 5(1): 1–34. Dostupné z WWW: <https://dergipark.org.tr/en/download/article-file/936333>.

25. Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol (Lausanne) 2020; 11: 191. Dostupné z DOI: <http://dx.doi.org/10.3389/fendo.2020.00191>.

26. Giaccari A, Solini A, Frontoni S et al. Metformin benefits: Another example for alternative energy substrate mechanism? Diabetes Care 2021; 44(3): 647–654. Dostupné z DOI: <http://dx.doi.org/10.2337/dc20–1964>.

27. Luo P, Qiu L, Liu Y et al. Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis. Am J Trop Med Hyg 2020; 103(1): 69–72. Dostupné z DOI: <http://dx.doi.org/10.4269/ajtmh.20–0375>.

28. Jiang N, Chen Z, Liu L et al. Association of metformin with mortality or ARDS in patients with COVID-19 and type 2 diabetes: A retrospective cohort study. Diabetes Res Clin Pract 2021; 173: 108619. Dostupné z DOI: <http://dx.doi.org/10.1016/j.diabres.2020.108619>.

29. Lee YS, Park MS, Choung JS et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 2012; 55(9): 2456–2468. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–012–2592–3>.

30. Vinué Á, Navarro J, Herrero-Cervera A et al. The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype. Diabetologia 2017; 60(9): 1801–1812. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–017–4330–3>.

31. Wan S, Sun H. Glucagon-like peptide-1 modulates RAW264.7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Exp Ther Med 2019; 17(5): 3573–3579. Dostupné z DOI: <http://dx.doi.org/10.3892/etm.2019.7347>.

32. Hadjiyanni I, Siminovitch KA, Danska JS et al. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia 2010; 53(4): 730–740. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–009–1643-x>.

33. Kuchay MS, Krishan S, Mishra SK et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: A randomized controlled trial (E-LIFT Trial). Diabetes Care 2018; 41(8): 1801–1808. Dostupné z DOI: <http://dx.doi.org/10.2337/dc18–0165>.

34. Xu L, Nagata N, Nagashimada M et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 2017; 20: 137–149. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ebiom.2017.05.028>.

35. Xu L, Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte 2018; 7(2): 121–128. Dostupné z DOI: <http://dx.doi.org/10.1080/21623945.2017.1413516>.

36. Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: The potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab 2018; 44(6): 457–464. Dostupné z DOI: <http://dx.doi.org/10.1016/j.diabet.2018.09.005>.

Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#